LED白光实现方式

  目前的白光LED技术或多或少都存在着一些发展瓶颈,即无论采用哪种白光实现方式,都存在着由于芯片结构、驱动电路、光学优化、封装工艺、半导体材料、荧光粉选择等诸多技术问题的限制,主要表现在亮度不足、均一性差、低演色性以及寿命不长等方面。

技术上的瓶颈同时也正是商业上的机会。目前,国内外大量的研究机构都在积极开展研究工作来解决这些问题,很多新技术得以研究和发展。谁能抢先一步呢?

倒装芯片技术。在P电极上做上厚层的银发射器,由于厚合金材料的P型电极具有良好的欧姆接触特性和电流扩展性能,且热导率更大,从而提高了芯片的发光效率和散热能力,解决了传统正装结构LED的电流扩展性能、光学性能及散热能力差的问题。

加拿大英属哥伦比亚大学和清华大学电子工程系集成光电子学国家重点实验室在这一技术的研究上都取得了一定的成果。

表面粗化技术。将满足全反射的光改变方向,使其不会因全反射而透过界面,从而提高取光效率并降低成本,且并不影响光转换特性。

德国Osram公司将磷化铝铟镓(AlInGaP)基芯片的窗口层表面做成具有斜面三角形的纹理结构,光子的反射路线被封闭在这一结构中。采用这一技术可获得50%以上的外量子效率。

光子晶体结构。光子晶体具有周期性介质结构,它具有光子禁带和光子局域。可通过光子禁带特性来提高发光效率。这是由于光子禁带可以使一定频率的辐射光被抑制,同时当器件发光频率在光子禁带时,可使更多的光模辐射到空气中。

目前,光子晶体结构已成为提升白光LED性能主要的技术方向,现已研制成不同波长的量子阱、量子点和阵列结构的白光LED。Osram公司所开发的“ThinGaN”LED,通过在氮化铟镓(InGaN)层上形成的金属膜的镜面作用,激发出更多的光输出。

驱动电路优化。LED光源的特性也对驱动电源提出了很高的要求,目前低功率的供电系统制约了LED的节能特性,高效率、低成本、小体积、强稳定是LED光源驱动电路设计的主要方向。

中科院近代物理研究所针对高速大功率LED设计了一套驱动电路方案,具有驱动脉冲前后沿快及大电流输出的特点。此外,对可调亮度和高演色性白光LED的控制电路和调光电路的设计也取得了很大的进展。

半导体材料工艺。LED技术发展的主线是晶片半导体材料的更新和加工工艺的不断改进。与大规模集成电路的摩尔定律相似,LED的光通量遵循着Haitz定律,即每18~24个月增加一倍。

封装技术。封装也是不可小觑的技术,若由于封装设计或采用材料不良,就会直接影响其他技术的成效。

日本OMROM公司研发出一种新的封装技术,将透镜光学和反射光学结构进行组合,采用“DoubleReflection”光学结构,使LED因广角造成的光损失由此向外输出,提高发光效率。

此外,还有其他一些技术如光学设计、芯片结构优化、发光面积改善、荧光粉材料等方面都在得到积极的研究和发展。

发表评论